skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ludlow, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We demonstrate programmable control over the spatial distribution of ultra-cold atoms confined in an optical lattice. The control is facilitated through a combination of spatial manipulation of the magneto-optical trap and atomic population shelving to a metastable state. We first employ the technique to load an extended (5 mm) atomic sample with uniform density in an optical lattice clock (OLC), reducing atomic interactions and realizing remarkable frequency homogeneity across the atomic cloud. We also prepare multiple spatially separated atomic ensembles, and realize multi-ensemble clock operation within the standard one-dimensional (1D) OLC architecture. Leveraging this technique, we prepare two oppositely spin-polarized ensembles that are independently addressable, offering a platform for implementing spectroscopic protocols for enhanced tracking of local oscillator phase. Finally, we demonstrate a relative fractional frequency instability at one second of 2.4 ( 1 ) × 10 17 between two ensembles, useful for characterization of intra-lattice differential systematics. 
    more » « less
  2. We report on the first deployment of a ytterbium (Yb) transportable optical lattice clock (TOLC), commercially shipping the clock 3000 km from Boulder, Colorado, to Washington DC. The system, composed of a rigidly mounted optical reference cavity, an atomic physics package, and an optical frequency comb, fully realizes an independent frequency standard for comparisons in the optical and microwave domains. The shipped Yb TOLC was fully operational within 2 days of arrival, enabling frequency comparison with a rubidium (Rb) fountain at the United States Naval Observatory (USNO). To the best of our knowledge, this represents the first deployment of a fully independent TOLC, including the frequency comb, coherently uniting the optical stability of the Yb TOLC to the microwave output of the Rb fountain. 
    more » « less
  3. Grating magneto-optical traps are an enabling quantum technology for portable metrological devices with ultracold atoms. However, beam diffraction efficiency and angle are affected by wavelength, creating a single-optic design challenge for laser cooling in two stages at two distinct wavelengths – as commonly used for loading, e.g., Sr or Yb atoms into optical lattice or tweezer clocks. Here, we optically characterize a wide variety of binary gratings at different wavelengths to find a simple empirical fit to experimental grating diffraction efficiency data in terms of dimensionless etch depth and period for various duty cycles. The model avoids complex 3D light-grating surface calculations, yet still yields results accurate to a few percent across a broad range of parameters. Gratings optimized for two (or more) wavelengths can now be designed in an informed manner suitable for a wide class of atomic species enabling advanced quantum technologies. 
    more » « less
  4. Abstract We present a concept for a high-precision optical atomic clock (OAC) operating on an Earth-orbiting space station. This pathfinder science mission will compare the space-based OAC with one or more ultra-stable terrestrial OACs to search for space-time-dependent signatures of dark scalar fields that manifest as anomalies in the relative frequencies of station-based and ground-based clocks. This opens the possibility of probing models of new physics that are inaccessible to purely ground-based OAC experiments where a dark scalar field may potentially be strongly screened near Earth’s surface. This unique enhancement of sensitivity to potential dark matter candidates harnesses the potential of space-based OACs. 
    more » « less
  5. null (Ed.)